KS3	Unit 23	Number	Machines	and	Sequences
-----	---------	--------	----------	-----	-----------

Topic/Skill	Definition/Tips	Example
1. Linear	A number pattern with a common	2, 5, 8, 11 is a linear sequence
Sequence	difference.	
2. Term	Each value in a sequence is called a term.	In the sequence 2, 5, 8, 11, 8 is the
		third term of the sequence.
3. Term-to-	A rule which allows you to find the next	First term is 2. Term-to-term rule is
term rule	term in a sequence if you know the	'add 3'
	previous term.	
4 .1 .		Sequence 1s: 2, 5, 8, 11
4. nth term	A rule which allows you to calculate the	nth term is $3n-1$
	sequence	The 100^{th} term is $3 \times 100 - 1 - 200$
	sequence.	The 100 term is $3 \times 100 - 1 - 299$
	Also known as the 'position-to-term' rule.	
	1	
	n refers to the position of a term in a	
	sequence.	
5. Finding the	1. Find the difference .	Find the nth term of: 3, 7, 11, 15
nth term of a	2. Multiply that by <i>n</i> .	1 Difference in 14
linear	3. Substitute $n = 1$ to find out what	1. Difference is ± 4
sequence	number you need to add or subtract to get the first number in the sequence	2. Start with 4π
	get the first number in the sequence.	$3.4 \times 1 = 4$, so we need to subtract 1 to get 3
		nth term = $4n - 1$
6. Fibonacci	A sequence where the next number is found	The Fibonacci sequence is:
type sequences	by adding up the previous two terms	1,1,2,3,5,8,13,21,34
		An example of a Fibonacci-type
		sequence is:
7 Commentation	A	4, 7, 11, 18, 29
7. Geometric	A sequence of numbers where each term is found by multiplying the provious one by	An example of a geometric sequence is:
Sequence	a number called the common ratio r	2, 10, 50, 250 The common ratio is 5
	a number caned the common ratio, r.	
		Another example of a geometric
		sequence is:
		81, -27, 9, -3, 1
		The common ratio is $-\frac{1}{2}$
8. Quadratic	A sequence of numbers where the second	2 6 12 20 30 42
Sequence	difference is constant.	+4 +6 +8 +10 +12
	A quadratic sequence will have a n^2 term.	+2 +2 +2 +2
9. Function	Takes an input value, performs some	
Machine	operations and produces an output value.	INPUT X 3 > + 4 > OUTPUT