KS3 Unit 4 Squares, Cubes, Roots and BIDMAS and Unit 5 Index Rules

Topic/Skill	Definition/Tips	Example
1. BIDMAS	An acronym for the order you should do	$6 + 3 \times 5 = 21, not 45$
	calculations in.	
	BIDMAS stands for 'Brackets, Indices,	$5^2 = 25$, where the 2 is the
	Division, Multiplication, Addition and	index/power.
	Subtraction'.	
	Indices are also known as 'powers' or	
	'orders'.	
	With strings of division and multiplication,	$12 \div 4 \div 2 = 1.5$, not 6
	or strings of addition and subtraction, and	12 · + · 2 – 1.5,100 0
	no brackets, work from left to right.	
2. Square	The number you get when you multiply a	1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121,
Number	number by itself.	144, 169, 196, 225
		$9^2 = 9 \times 9 = 81$
3. Square Root	The number you multiply by itself to get	$9^2 = 9 \times 9 = 81$ $\sqrt{36} = 6$
	another number.	
		because $6 \times 6 = 36$
	The reverse process of squaring a number.	
4. Solutions to	Equations involving squares have two	Solve $x^2 = 25$
$x^2 =$	solutions, one positive and one negative.	
		x = 5 or x = -5
		This can also be written as $x = \pm 5$
5. Cube	The number you get when you multiply a	1, 8, 27, 64, 125
Number	number by itself and itself again.	
6. Cube Root	The number you multiply by itself and	$2^3 = 2 \times 2 \times 2 = 8$ $\sqrt[3]{125} = 5$
	itself again to get another number.	
		because $5 \times 5 \times 5 = 125$
	The reverse process of cubing a number.	
7. Powers of	The powers of a number are that number	The powers of 3 are:
	raised to various powers.	21 2
		$3^1 = 3$
		$3^2 = 9$ $3^3 = 27$
8.	When multiplying with the same base	$3^4 = 81$ etc. $7^5 \times 7^3 = 7^8$
o. Multiplication	(number or letter), add the powers .	$a^{12} \times a = a^{13}$
Index Law	(number of fetter), and the powers.	$a^{-1} \times a = a^{-1}$ $4x^5 \times 2x^8 = 8x^{13}$
	$a^m imes a^n = a^{m+n}$	$4\lambda \wedge \lambda \lambda = 0\lambda$
9. Division	When dividing with the same base (number	$15^7 \div 15^4 = 15^3$
Index Law	or letter), subtract the powers.	$x^9 \div x^2 = x^7$
		$20a^{11} \div 5a^3 = 4a^8$
	$a^m \div a^n = a^{m-n}$	
10. Brackets	When raising a power to another power,	$(y^2)^5 = y^{10}$
Index Laws	multiply the powers together.	$(6^3)^4 = 6^{12}$
		$(5x^6)^3 = 125x^{18}$

	$(a^m)^n = a^{mn}$	
11. Notable Powers	$egin{array}{c} p = p^1 \ p^0 = 1 \end{array}$	$99999^0 = 1$
12. Negative Powers	A negative power performs the reciprocal. $a^{-m} = \frac{1}{a^m}$	$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$
13. Fractional Powers	The denominator of a fractional power acts as a 'root'.	$27^{\frac{2}{3}} = \left(\sqrt[3]{27}\right)^2 = 3^2 = 9$
	The numerator of a fractional power acts as a normal power.	$\left(\frac{25}{16}\right)^{\frac{3}{2}} = \left(\frac{\sqrt{25}}{\sqrt{16}}\right)^3 = \left(\frac{5}{4}\right)^3 = \frac{125}{64}$
	$a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$	