4.1 Cell biology

Cell Structure student checklist

AQA Critoria	Objectives	••	••	••
Cillend)	Ŭ
4.1.1.1	Eukaryotes and prokaryotes			
Plant and	animal cells (eukaryotic cells) have a cell membrane, cytoplasm			
and genetic material enclosed in a nucleus.				
Bacterial cells (prokaryotic cells) are much smaller in comparison. They				
have cytoplasm and a cell membrane surrounded by a cell wall. The				
genetic material is not enclosed in a nucleus. It is a single DNA loop and				
there may	y be one or more small rings of DNA called plasmids .			
4.1.1.2	Animal and plant cells			
Students s	should be able to explain how the main sub-cellular structures,			
including the nucleus, cell membranes, mitochondria, chloroplasts in plant				
cells and plasmids in bacterial cells are related to their functions.				
Most animal cells have the following parts:				
• nucleus • cytoplasm • a cell membrane • mitochondria • ribosomes.				
In addition to the parts found in animal cells, plant cells often have:				
• chloroplasts				
a permanent vacuole filled with cell sap.				
Plant and algal cells also have a cell wall made of cellulose , which				
strengthe	ns the cell.			
4.1.1.3	Cell specialisation			
You should be able to, (when provided with appropriate Information),				
explain how the structure of different types of cell relate to their function in				
a tissue, an organ or organ system, or the whole organism.				
Cells may be specialised to carry out a particular function:				
sperm cells, nerve cells and muscle cells in animals				
• root hai	r cells, xylem and phloem cells in plants.			
4.1.1.4	Cell differentiation			
You shoul	d be able to explain the importance of cell differentiation.			
As an organism develops, cells differentiate to form different types of cells.				
 Most types of animal cell differentiate at an early stage. 				
 Many ty 	pes of plant cells retain the ability to differentiate throughout life.			
In mature	animals, cell division is mainly restricted to repair and			
replacement. As a cell differentiates it acquires different sub-cellular				
structures	to enable it to carry out a certain function. It has become a			
specialise				
4.1.1.5	Microscopes			
You shoul	d be able to:			
Understand how microscopy techniques have developed over time				
explain now electron microscopy has increased understanding of sub-				
Limited to	the differences in magnification and resolution			
Limited to the differences in magnification and resolution.				

An electron microscope has much higher magnification and resolving power (resolution) than a light microscope. This means that it can be used to study cells in much finer detail. This has enabled biologists to see and understand many more sub-cellular structures.			
You should be able to carry out calculations involving magnification, real size and image size using the formula: magnification = <u>size of image</u> size of real object			
You should be able to express answers in standard form if appropriate.			